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Visual Analytics
is the science of analytics reasoning 

guided by 
statistical analysis, machine learning 

and interactive visualization 



Outline

Visual analytics to enhance:

§ Teamwork for healthcare
§ Operation & performance of extreme-scale systems
§ Comprehension of large collection of documents



EHR Data Analytics
to Enhance Patient Care Multiteam Systems



Multiteam Systems for Healthcare 



From Access Log to Networks

Stored information:

1. Healthcare Professionals (HCPs)

2. Notes

3. Access timestamps

4. Direction of interactions



ML Assisted Visual Analytics
§ Informed by:

– Communication network theories: structure, position, and flow

– Systems engineering principles: workflow, value, waste (time, cognition)

§ Designed to assist HCPs with visualization guided information-
processing to: 
– quickly browse an overview of their patients’ medical care 

– identify MTS members involved at specific points and periods in time 

– drill down to discover important details (i.e., notes, messages, reports, etc.)

– see who has accessed/reviewed specific EHR documentations

– efficiently rectify gaps in information-sharing by members of the MTS



Workflow



Case Study I
§ Patient Group: 53 patients, between age 65-75 with Stage 3 lung cancer, in 

which 27 survived and 26 did not.
§ Communication effectiveness metrics are weighted combinations of multiple 

network measures (e.g., degree, distance, closeness, betweenness, etc.)
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§ The distance measure is the 
average number of directed 
edges between every HCP 
node and note node in a 
network. 

§ A network with a higher 
distance value suggests the 
HCPs in the network are 
more connected.



Information Reachability

HCP Note

Information reachability visualization for a patient who survived

Note Reachability: 0.77             HCP Reachability: 0.79 Note Reachability: 0.07             HCP Reachability: 0.17



Information Reachability
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Information reachability visualization for a patient who did not survive

HCP Note

Note Reachability: 0.56             HCP Reachability: 0.21 Note Reachability: 0.05             HCP Reachability: 0.11
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Streaming Data Analytics 
for Hardware System Monitoring



Monitoring Supercomputing Systems

sensor data

Data Preparation

Visual Analytics

System
Logs

decision



Supercomputer Hardware Logs

§ Streaming, multivariate, time series

§ A representative dataset 
– Extracted from the K Computer, Riken, Japan

– 864 Racks

– 390 temperature and 480 voltage readings per rack

– 1162 measures per rack

– 288 time points per measure (every 5min)

– Data volume: ~2GB per day 



Technical Approach
§ Expect to start with select readings and initial time points
§ We adopt the magnitude-shape plot (MS plot by Dai and 

Genton 2018), which reveals both the functional magnitude 
and shape outlyingness of time-series data.

§ Incrementally compute the MS plot with every new time 
point added to the continuum

§ Progressively update the MS plot with every new time 
series added

§ Employ FPCA together with MS plots to conduct further 
analysis of select outliers 



Magnitude Shape Plot

§ W. Dai and M. Genton, “Multivariate Functional Data Visualization 
and Outlier Dection”, J. Comput. Graph. Stat. 27(4) 2018

§ Designed to visualize both the magnitude outlyingness
(MO) and shape outlyingness (VO) of multivariate 
functional data based on  measures of directional 
outlyingness (O)

§ The plot depicts how much a time series has a different 
magnitude and shape with other time series, and thus 
visually reveals outliers.



Visual Outlier Detection 
with the Magnitude Shape Plot

§ Simulated functional data and the MS plot with magnitude outlyingness (MO) 
and shape outlyingness (VO) along x-axis and y-axis, respectively.



Incremental Update of the MS Plot 

§ Recomputing the MS Plot when new time points 
for each series arrive is costly, infeasible for real-
time monitoring tasks.

§ Incremental update of exact MO and VO!
§ MOT+1 (XT+1) = !

"#!
(TMOT(XT) + O(XT+1[T+1]))

§ The required memory space to save the previous results, 
MO and FO, for all N time series is O(N).



Progressive Update of the MS Plot 

§ The exact update for a new time series requires recomputation of the 
measures for all N time series at all time points!

§ When the number of time series, N, in a system is large, this 
recomputation is computationally prohibit. 

§ To avoid recomputation, a progressive algorithm is designed to 
generate the MS plot with approximated O.

§ Exact update is made only when the KL (Kullback-Leibler) divergence 
of the mean absolute deviation between the new and original sets of 
time series becomes larger than a set threshold value.



Visual Analytics Interface



Outlier Identification and Validation



Outlier Identification and Validation

Voltage swapping across the mean!



Visual Analytics for
Comprehension of 

Large Collections of Documents



§ LLM as Agents
– A chatbot that directly answers questions

– Easy to develop and highly generalizable

– Lacking transparency & mechanisms to convey uncertainty/confidence

– No robust, established ways of evaluating the quality of responses

§ LLM as NLP (Natural Language Processing) Task Solvers
– NLP Tasks: Topic analysis, sentiment analysis, relation extraction, etc. 

– Transparent processes, interpretable results, and customizable tasks

– Prompt engineering is non-trivial and using LLMs is still a costly approach

LLM in Document Analysis



§ Sensemaking of large collections of unstructured text
§ Design considerations:

– Overview of article topics, keywords, and their connections
– Support of drill-down, progressive disclosure 
– Transparency, interpretability, and direct manipulation
– Detailed analysis of a specific target of interest

§ A combined approach:
– Processing data with LLMs followed by interactive visualization to 

find and keep track of targets of interest
– Sensemaking on the targets of interest with LLM Chatbots

A Combined Approach



Example I: HyperMap



Example I: HyperMap



§ User Study on literature review using HyperMap
– Chatbot group vs HyperMap group

§ Findings
– Chatbot is good at explaining unknown keywords and summarizing 

articles or the course of conversation.

– Users have less trust over the Chatbot for critical questions        
(e.g., if a statement/claim is true/justified )

– The performance of the Chatbot group is less consistent (e.g., the 
user may get contradictory answers or be unsure what to ask next.)

– Visualizations can help direct the process and track the analysis 
targets.

Example I: HyperMap



Example II: Sea of Voices

Surfacing the Unheard Voices
Lyudao Resident Interview Exploration



Example II: Sea of Voices



Visual Analytics for High Dimensional Data
§ Hyeon Jeon, Yun-Hsin Kuo, Michaël Aupetit, Kwan-Liu Ma, Jinwook Seo: Classes are not Clusters: Improving Label-

based Evaluation of Dimensionality Reduction. IEEE Transactions on Visualization and Computer Graphics 30 
(1) (2024) (presented at IEEE VIS 2023)

§ Takanori Fujiwara, Yun-Hsin Kuo, Anders Ynnerman, Kwan-Liu Ma: Feature Learning for Nonlinear Dimensionality 
Reduction toward Maximal Extraction of Hidden Patterns. IEEE PacificVis 2023: 122-131 
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Computer Graphics 28(6): 2338-2349 (2022)

§ Takanori Fujiwara, Xinhai Wei, Jian Zhao, Kwan-Liu Ma: Interactive Dimensionality Reduction for Comparative 
Analysis. IEEE Transactions on Visualization and Computer Graphics 28(1): 758-768 (2022) (presented at IEEE 
VIS 2021)

§ Takanori Fujiwara, Shilpika, Naohisa Sakamoto, Jorji Nonaka, Keiji Yamamoto, Kwan-Liu Ma: A Visual Analytics 
Framework for Reviewing Multivariate Time-Series Data with Dimensionality Reduction. IEEE Transactions on 
Visualization and Computer Graphics 27(2): 1601-1611 (2021) (presented at IEEE VIS 2020)

§ Takanori Fujiwara, Jia-Kai Chou, Shilpika, Panpan Xu, Liu Ren, Kwan-Liu Ma: An Incremental Dimensionality 
Reduction Method for Visualizing Streaming Multidimensional Data. IEEE Transactions on Visualization and 
Computer Graphics 26(1): 418-428 (2020)
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