Visual Analytics for Emerging Data Intensive Problems

Kwan-Liu Ma University of California at Davis

ICRI 2023, Academia Sinica

Visual Analytics

is the science of analytics reasoning guided by statistical analysis, machine learning and interactive visualization

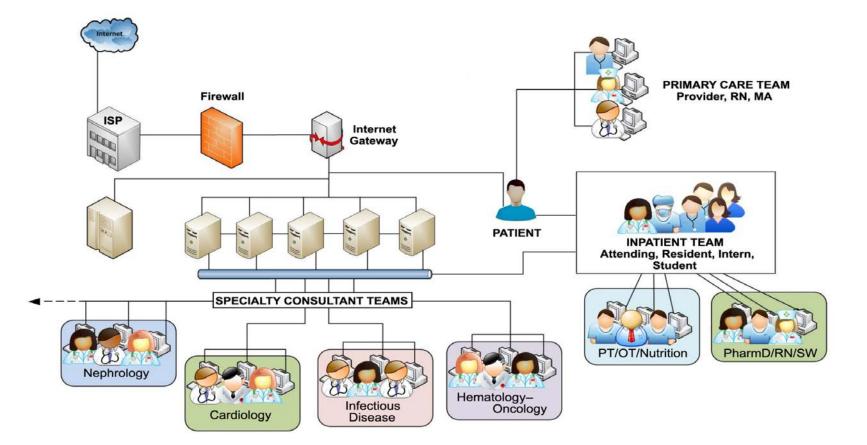
Outline

Visual analytics to enhance:

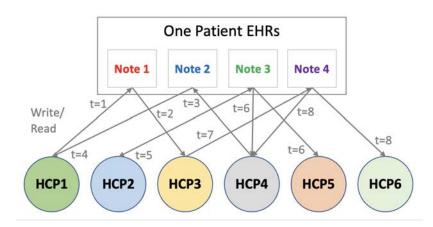
- Teamwork for healthcare
- Operation & performance of extreme-scale systems
- Comprehension of large collection of documents

EHR Data Analytics to Enhance Patient Care Multiteam Systems

Multiteam Systems for Healthcare

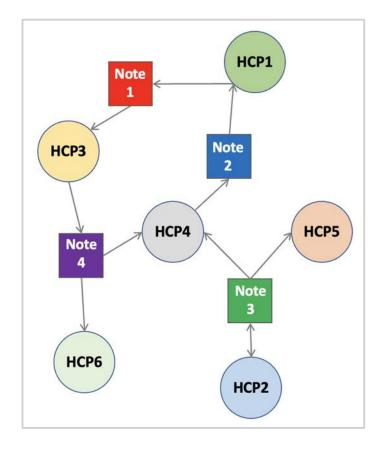


From Access Log to Networks



Stored information:

- 1. Healthcare Professionals (HCPs)
- 2. Notes
- 3. Access timestamps
- 4. Direction of interactions

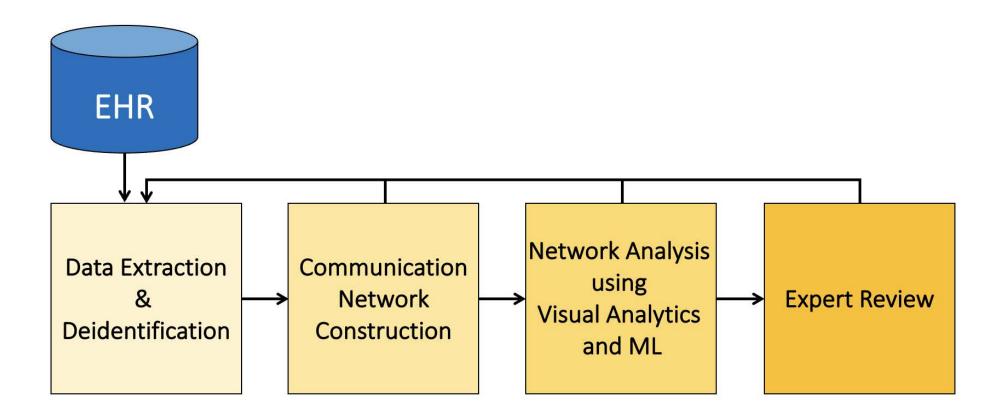


ML Assisted Visual Analytics

Informed by:

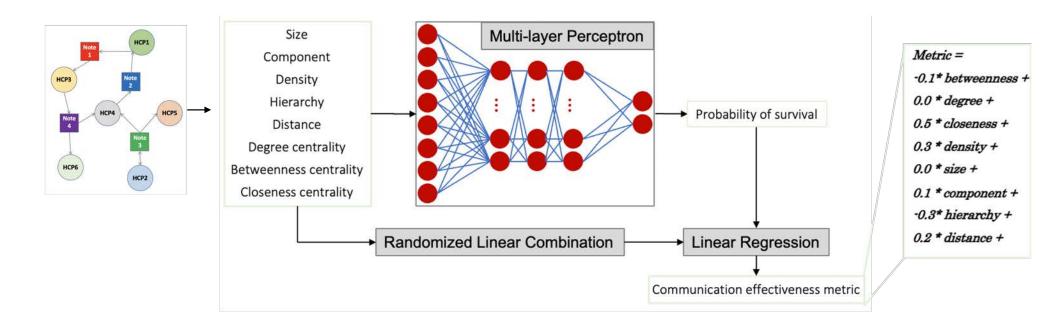
- Communication network theories: structure, position, and flow
- Systems engineering principles: workflow, value, waste (time, cognition)
- Designed to assist HCPs with visualization guided informationprocessing to:
 - quickly browse an overview of their patients' medical care
 - identify MTS members involved at specific points and periods in time
 - drill down to discover important details (i.e., notes, messages, reports, etc.)
 - see who has accessed/reviewed specific EHR documentations
 - efficiently rectify gaps in information-sharing by members of the MTS

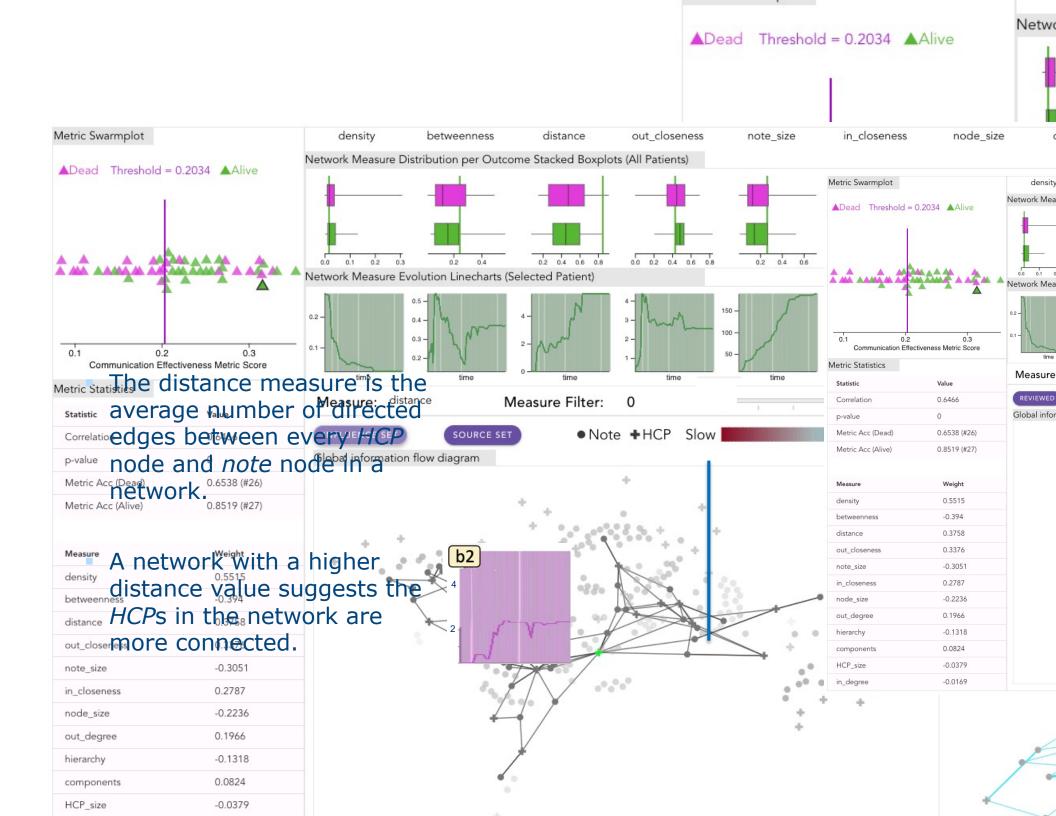
Workflow



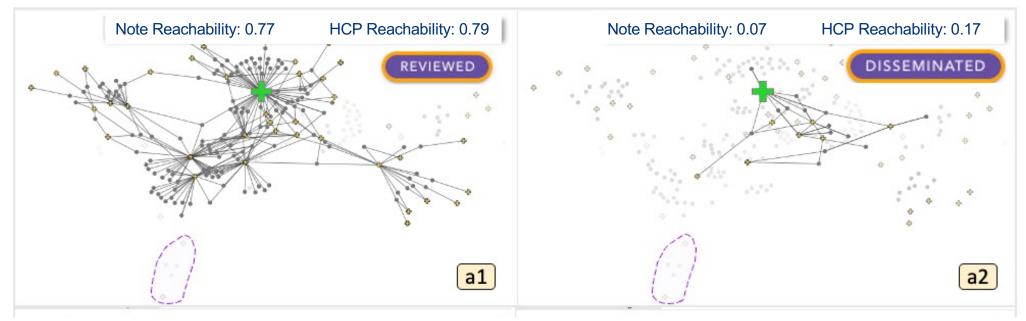
Case Study I

- Patient Group: 53 patients, between age 65-75 with Stage 3 lung cancer, in which 27 survived and 26 did not.
- Communication effectiveness metrics are weighted combinations of multiple network measures (e.g., degree, distance, closeness, betweenness, etc.)





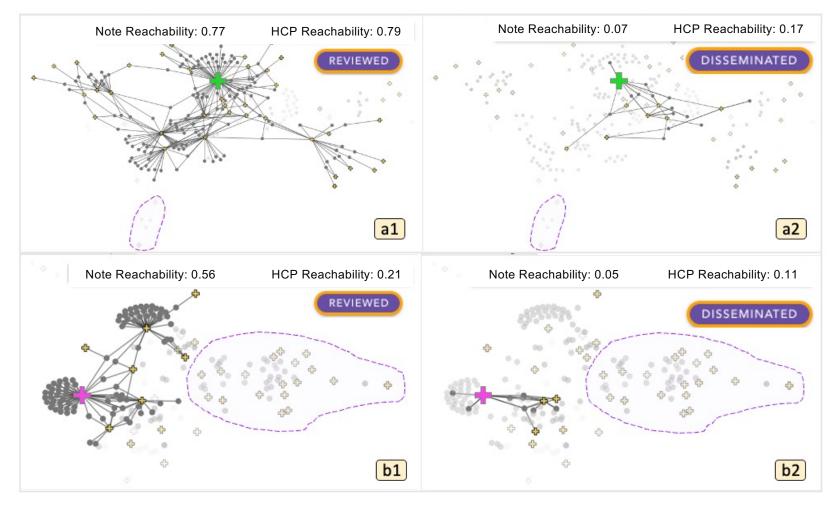
Information Reachability



Information reachability visualization for a patient who survived

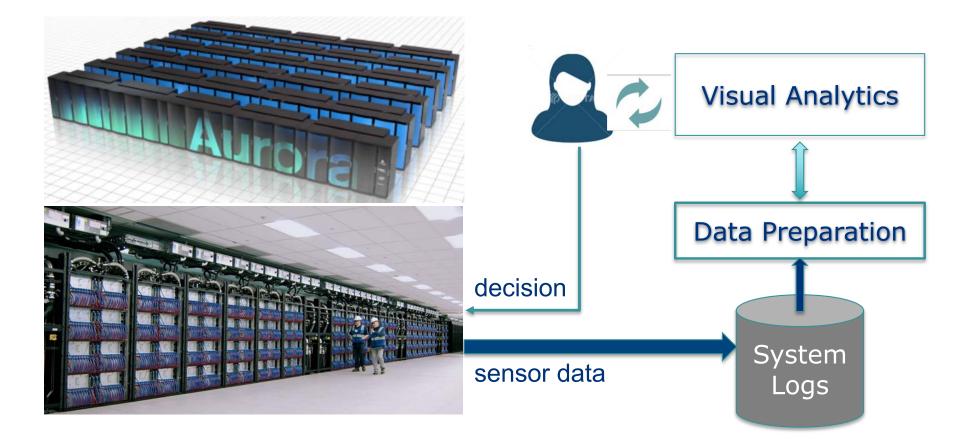
Correlation	Correlation	0.0400		
p-value	p-value	0	Global information flow diagram	
Metric Acc (Dead)	Metric Acc (Dead)	0.6538 (#26)		
Metric Acc (Alive)	Metric Acc (Alive)	0.8519 (#27)	÷	÷
Measure	Measure	Weight	+ + +	
density	density	0.000		
betweenr Note Reachal		0 5515 lity: 0.21	Note Reachability: 0.05 HCP Reachability: 0.11	
distance	betweenness	-0.394		
out_closeness	distance	0.3758		
note_size	out_closeness	0.3376		
in_closeness	note_size	-0.3051		P
node_size	in_closeness	0.2787		V
out_degree	node_size	-0.2236	4	/
hierarchy	out_degree	0.1966		2
components	hierarchy		🖈	
HCP_size	ormation reachability		a patient who did not survive	
in_degree	components	0.0824		
	HCP_size	-0.0379	HCP Note	
	in_degree	-0.0169		

Information Reachability



Streaming Data Analytics for Hardware System Monitoring

Monitoring Supercomputing Systems



Supercomputer Hardware Logs

- Streaming, multivariate, time series
- A representative dataset
 - Extracted from the K Computer, Riken, Japan
 - 864 Racks
 - 390 temperature and 480 voltage readings per rack
 - 1162 measures per rack
 - 288 time points per measure (every 5min)
 - Data volume: ~2GB per day

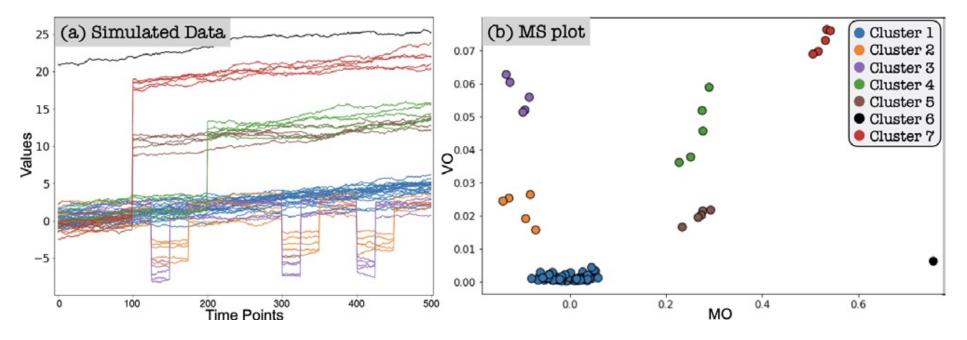
Technical Approach

- Expect to start with select readings and initial time points
- We adopt the magnitude-shape plot (MS plot by Dai and Genton 2018), which reveals both the functional magnitude and shape outlyingness of time-series data.
- Incrementally compute the MS plot with every new time point added to the continuum
- Progressively update the MS plot with every new time series added
- Employ FPCA together with MS plots to conduct further analysis of select outliers

Magnitude Shape Plot

- W. Dai and M. Genton, "Multivariate Functional Data Visualization and Outlier Dection", J. Comput. Graph. Stat. 27(4) 2018
- Designed to visualize both the magnitude outlyingness (MO) and shape outlyingness (VO) of multivariate functional data based on measures of directional outlyingness (O)
- The plot depicts how much a time series has a different magnitude and shape with other time series, and thus visually reveals outliers.

Visual Outlier Detection with the Magnitude Shape Plot



 Simulated functional data and the MS plot with magnitude outlyingness (MO) and shape outlyingness (VO) along x-axis and y-axis, respectively.

Incremental Update of the MS Plot

- Recomputing the MS Plot when new time points for each series arrive is costly, infeasible for realtime monitoring tasks.
- Incremental update of exact MO and VO!

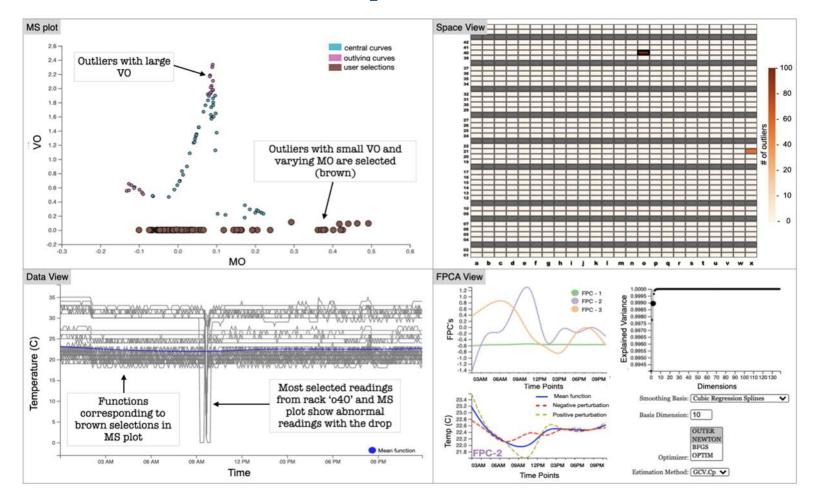
•
$$MO^{T+1}(X^{T+1}) = \frac{1}{T+1}(TMO^{T}(X^{T}) + O(X^{T+1}[T+1]))$$

 The required memory space to save the previous results, MO and FO, for all N time series is O(N).

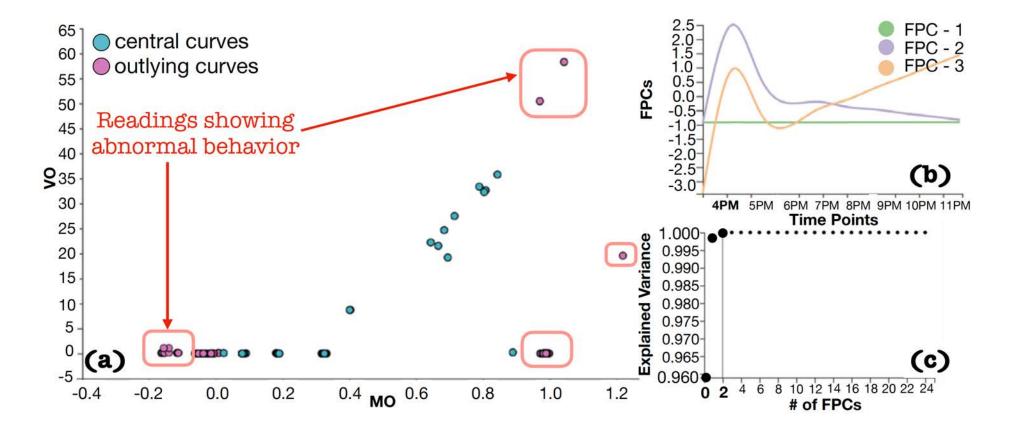
Progressive Update of the MS Plot

- The exact update for a new time series requires recomputation of the measures for all N time series at all time points!
- When the number of time series, N, in a system is large, this recomputation is computationally prohibit.
- To avoid recomputation, a progressive algorithm is designed to generate the MS plot with approximated O.
- Exact update is made only when the KL (Kullback-Leibler) divergence of the mean absolute deviation between the new and original sets of time series becomes larger than a set threshold value.

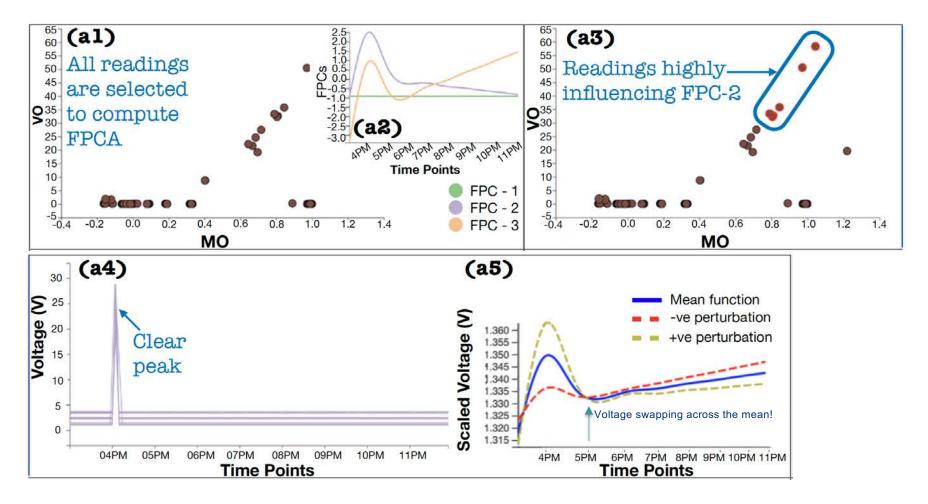
Visual Analytics Interface



Outlier Identification and Validation



Outlier Identification and Validation



Visual Analytics for Comprehension of Large Collections of Documents

LLM in Document Analysis

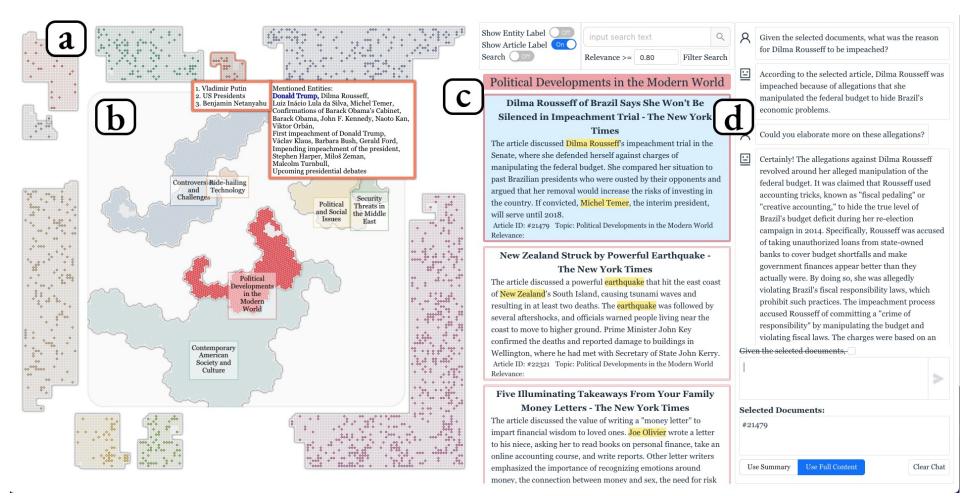
LLM as Agents

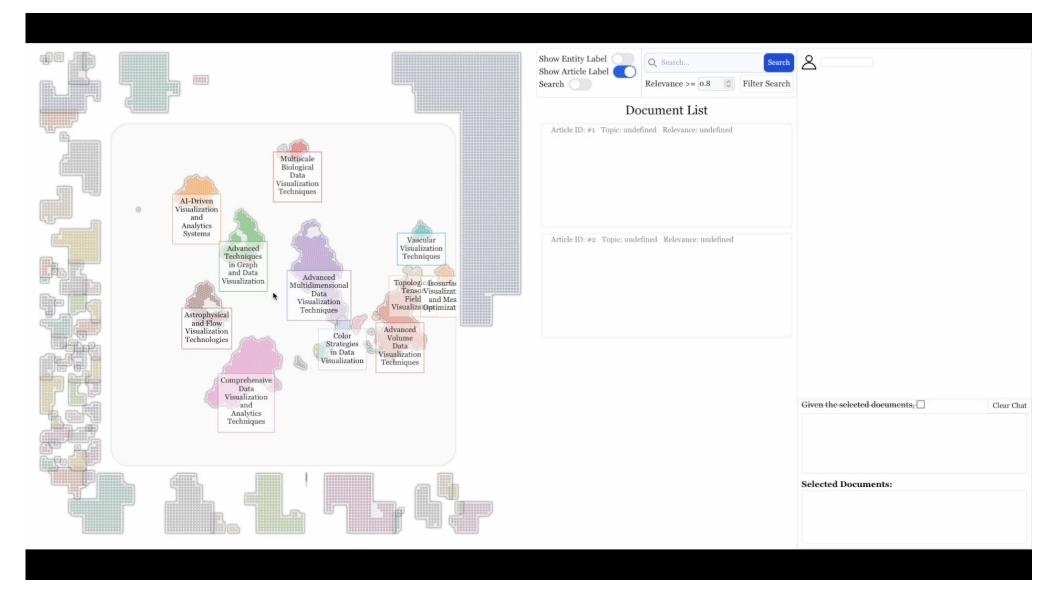
- A chatbot that directly answers questions
- Easy to develop and highly generalizable
- Lacking transparency & mechanisms to convey uncertainty/confidence
- No robust, established ways of evaluating the quality of responses
- LLM as NLP (Natural Language Processing) Task Solvers
 - NLP Tasks: Topic analysis, sentiment analysis, relation extraction, etc.
 - Transparent processes, interpretable results, and customizable tasks
 - Prompt engineering is non-trivial and using LLMs is still a costly approach

A Combined Approach

- Sensemaking of large collections of unstructured text
- Design considerations:
 - Overview of article topics, keywords, and their connections
 - Support of drill-down, progressive disclosure
 - Transparency, interpretability, and direct manipulation
 - Detailed analysis of a specific target of interest
- A combined approach:
 - Processing data with LLMs followed by interactive visualization to find and keep track of *targets of interest*
 - Sensemaking on the targets of interest with LLM Chatbots

Example I: HyperMap





Example I: HyperMap

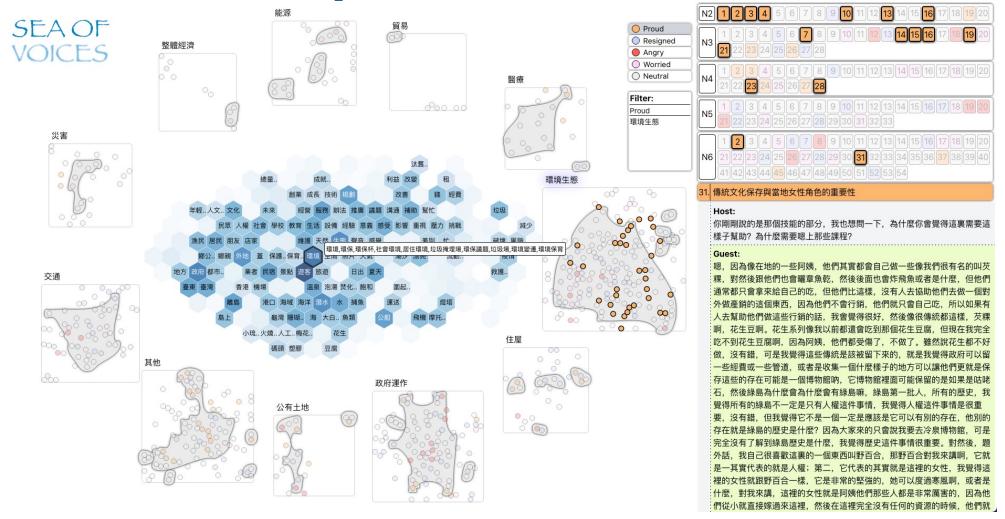
- User Study on literature review using HyperMap
 - Chatbot group vs HyperMap group

Findings

- Chatbot is good at explaining unknown keywords and summarizing articles or the course of conversation.
- Users have less trust over the Chatbot for critical questions (e.g., if a statement/claim is true/justified)
- The performance of the Chatbot group is less consistent (e.g., the user may get contradictory answers or be unsure what to ask next.)
- Visualizations can help direct the process and track the analysis targets.

Example II: Sea of Voices

Example II: Sea of Voices



Visual Analytics for High Dimensional Data

- Hyeon Jeon, Yun-Hsin Kuo, Michaël Aupetit, Kwan-Liu Ma, Jinwook Seo: Classes are not Clusters: Improving Labelbased Evaluation of Dimensionality Reduction. IEEE Transactions on Visualization and Computer Graphics 30 (1) (2024) (presented at IEEE VIS 2023)
- Takanori Fujiwara, Yun-Hsin Kuo, Anders Ynnerman, Kwan-Liu Ma: Feature Learning for Nonlinear Dimensionality Reduction toward Maximal Extraction of Hidden Patterns. IEEE PacificVis 2023: 122-131
- Shilpika, Takanori Fujiwara, Naohisa Sakamoto, Jorji Nonaka, Kwan-Liu Ma: A Visual Analytics Approach for Hardware System Monitoring with Streaming Functional Data Analysis. IEEE Transactions on Visualization and Computer Graphics 28(6): 2338-2349 (2022)
- Takanori Fujiwara, Xinhai Wei, Jian Zhao, Kwan-Liu Ma: Interactive Dimensionality Reduction for Comparative Analysis. IEEE Transactions on Visualization and Computer Graphics 28(1): 758-768 (2022) (presented at IEEE VIS 2021)
- Takanori Fujiwara, Shilpika, Naohisa Sakamoto, Jorji Nonaka, Keiji Yamamoto, Kwan-Liu Ma: A Visual Analytics Framework for Reviewing Multivariate Time-Series Data with Dimensionality Reduction. IEEE Transactions on Visualization and Computer Graphics 27(2): 1601-1611 (2021) (presented at IEEE VIS 2020)
- Takanori Fujiwara, Jia-Kai Chou, Shilpika, Panpan Xu, Liu Ren, Kwan-Liu Ma: An Incremental Dimensionality Reduction Method for Visualizing Streaming Multidimensional Data. IEEE Transactions on Visualization and Computer Graphics 26(1): 418-428 (2020)

Acknowledgments

- My students and collaborators
- National Institute of Health
- Department of Energy
- National Science Foundation
- University of California Climate Action Initiative
- Bosch Research
- Intel Corporation
- Institute of Statistical Science, Academia Sinica